

Ĩ)

٠

.

EUROMAG

TEL MUTZAGOEL N. EA02684 100 16 180 C IP 58 RODES NC PTFE Ċ.

> 3,1854 nuty CE

PRODUCT CATALOGUE DS066-6-ENG 🧭 💋 🏟 🚿

9

INDEX

Company	pg	5
Electromagnetic Flowmeters	pg	6
Sensor MUT2200EL	pg	8
Sensor MUT2300	pg	10
Sensor MUT1000EL	pg	12
Sensor MUT1100J	pg	14
Sensor MUT2400EL	pg	16
Sensor MUT500	pg	18
Sensor MUT4000	pg	20
Sensor MUT2100EL	pg	22
Sensor MUT2100F	pg	24
Sensor MUT1222	pg	26
Sensor MUT2770	pg	28
Sensor MUT2660	pg	30
Converter MC608	pg	32
Converter MC406	pg	34
Data Trasmission GSM/GPRS	pg	36
Field Verificator	pg	37
Ultrasonic Flowmeters	pg	38
ES2000 Wall Mount	pg	40
ES2000 Hand Held	pg	41
X100P	pg	42

To work with **innovative spirit**, to develop **high quality products** for the measurements of liquids.

THE COMPANY

Euromag International Srl has over 30 years experience in designing, manufacturing and supplying flowmeters for liquids. The facility located in Mestrino near Padova, North East of Italy, covers 3000 sqm with some 25 people working in it, and is certified ISO9001 since 1997.

The new state-of-art calibration rig, allows testing flowmeters up to DN2000. Recently it's been implemented, to provide a flow range of over 6000 m3/h. It consists of several different calibration benches, depending on the diameter.

Each weighing structure is equipped with an over-refined automatic control system and quick size exchange, to reduce calibration time as low as possible with increased accuracy.

Available certifications and declarations include:

- ISO 9001
- Certified calibration standards
- Welding certifications
- Industry related certifications: MID OIML R49 ATEX IECEx WRAS - NMI10 - Ballast systems - PAC Ghost - HART - FDA - SPAN

ELECTROMAGNETIC FLOWMETERS

The measurement principle of electromagnetic flowmeters (EMF) is based on Faraday's law of induction.

EMF can accurately measure the flow of any electrically conductive liquid, even those with low conductivities.

Typical applications include:

- Water industry: revenue metering, district metering,water abstraction, leakage detection
- Irrigation
- Wastewater industry: transport networks, sewage treatment plants, sludges
- Food & beverage industry: mixing, dosing and filling of drinks under hygienic conditions, filling systems applications
- Chemical industry: acids, alkalis, dosing applications, abrasive or corrosive mediums
- Pulp & paper industry: pulp, pastes, sludges and other caustic mediums, liquor, additives, bleaches, colourants
- Metal & mining industry: mediums with a high solid content, like ore or excavator mud

Highlights:

- Minimal or no inlets/outlets
- All Euromag flowmeters are wet-calibrated
- Large choice of liner materials suitable for potable water, wastewater, chemicals, and solids
- Maintenance free
- Suitable for use in custody transfer applications
- Measurement is independent of the flow profile and solid contents
- Zero-point stability regardless of changes in medium properties
- Nominal sizes DN 6 to DN 2.000
- Field verification with minimized cost for the installation

Sensors

FEATURES:

- High accuracy and wide flow rate range measurement
- Bi-directional measure
- Empty pipe electrode supplied as a standard (\geq DN50)
- Coupled with any Euromag converters
- Pressure port integrated (on request)
- In house wet calibration for all diameters (up to DN2000)
- Robust, fully welded and potted construction
- Standard solution for the widest range of industrial applications
- Certified for use in Ballast systems
- External coating for offshore or subsoil installation. Optional paint certified for C4 class environment
- Wide choice of materials for housing and flanges including SS304 and SS316

REFERENCE STANDARDS:

- Custody transfer (MID MI-001, OIML R49)
- \bullet IP68 for permanent immersion in water up to 1.5 m
- Drinking water approvals
- WRAS, FDA and DM174 approvals
- Atex IECEx (separate version)
- CE

The electromagnetic flowmeter for all applications

MUT2200EL sensors represent the state of the art of Euromag International production for water cycle and process applications.

APPLICATIONS:

- Water treatment
- Water distribution
- Industrial waste water
- Industrial processes
- Slurries
- Irrigation
- Pumping stations
- Dams
- Mining

Flow tube mate	rtal.							ALCI	201 /-+		217								
Flow tube mate	riai		AISI 304 (std), AISI 316																
Flanges materia	I		Carbon steel painted (std), AISI 304, AISI 316																
Electrodes mate	erial				ŀ	lastello	y C (sto	d), Haste	elloy B,	Titaniu	m, Tant	talum, F	Platinum	n					
				Interna	l lining						Liq	juid ter	nperat	ure					
Internal lining an liquid temperate	nd ure				PT	FE				St	andard	-40 /+	130°C (up to +	180° or	n reque	st)		
					Ebo	nite				-40°C / +80°C									
	mm	15	20	25	32	40	50	65	80	100	125	150	200	250	300	350	400		
	pollici	1/2"	3⁄4″	1″	1.1/4"	1.1/2"	2"	2.1/2"	3"	4"	4" 5" 6" 8" 10" 12" 14"					14"	16"		
Available sizes	mm	450	500	600	700	800	900	1000	1200	1300	1400	1500	1600	1700	1800	2000			
	pollici	18″	20″	24″	28″	32″	36"	40″	48″	52″	56″	60″	64″	68″	72″	80)"		
Flange standard available	s			E	EN1092			ansi 30 Le d - E					-	3S 4504	1,				
Protection Degr	ee		IP68 1,5 m continuous immersion (EN 60529)																
Compatible con	verters	MC608 A/B/R/P/I, MC406																	
Electrical conne	ctions		Cable glands M20 x 1.5 + terminal block + sealing resin																

TECHNICAL DRAWINGS

Pressure port integrated

\frown	\frown	\frown	
MID approved	OIML approved	GSM ready	
ίπηΠ	ΓηηΠ	l nn Ó J	

Designed for the toughest applications

Thanks to its unique design of the flowtube, the MUT2300 is the optimum solution for water and wastewater applications.

APPLICATIONS:

- Measure of potable or reflow water
- Distribution, municipal water
- Industrial waste water
- Overnight applications with very low flow rate
- Industrial process liquids, slurries and concretes
- Installation in small places without straight distances
- Leakage detection
- Fiscal measures
- Irrigation

FEATURES:

- U0-D0 installation: extreme flexibility on the flowmeter position
- Measure of extremely low flow rates, even in problematic applications and "night flows" or low season
- Neglectable pressure drop
- No moving parts
- Empty pipe electrode supplied as a standard (≥ DN65)
- Bi-directional measure
- Coupled with any Euromag converters
- In house wet calibration for all diameters
- Robust, fully welded and potted construction
- Engineered for very demanding applications
- External coating for offshore or subsoil installation. Optional paint certified for C4 class environment
- Wide choice of materials for housing and flanges including SS304 and SS316

- Custody transfer (MID MI-001, OIML R49)
- IP68 for permanent immersion in water up to 1.5 m
- Drinking water approvals
- WRAS, FDA and DM174 approvals
- Atex IECEx (separate version)
- CE

erial		AISI 304, AISI 316 (optional)									
al		Carbon steel (S235JR - 1.0037), AISI 304 optional, AISI 316 optional									
rodes		Hastelloy C (standard), Hastelloy B, Titanium, Tantalum, Platinum									
		Ebonite									
ture				-	40°C / + 80°	С					
mm	50	65	80	100	125	150	200	250	300		
inches	2″	21⁄2″	3"	4″	5″	6″	8″	10″	12″		
ed				EN109	2-1 PN 16, A	NSI 150	,				
ctions		AS	2129 (Table	D, E, F), AS 4	087 (PN 16, 2	21), KS10K, d	others on req	uest			
ation					21 bar						
class		DN≤80	∆P25 (< 0,25	ā bar)		DN≥	±100 ∆P40	(< 0,40 bar)			
onditions		U0-D0									
jree		IP68 permanent submersion at 1,5 m (EN 60529)									
patibility		MC608A/B/R/P, MC406									
ections			Cableg	lands M20 x	1.5 + termina	al box + seal	ing resin				
		al rodes 50 mm 50	al C C rodes C rodes C rodes C mm 50 65 inches 2" 2½" ed C ctions AS ation AS ation DN≤80 conditions patibility C	al Carbon steel (rodes Carbon steel (Hastelloy C (Hastelloy C (mm 50 65 80 inches 2" 2½" 3" ed tions AS 2129 (Table ation class DN≤80 ΔP25 (< 0,25 conditions patibility	al Carbon steel (S235JR - 1.00 rodes Hastelloy C (standard), Hastelloy C (sta	al Carbon steel (S235JR - 1.0037), AISI 304 rodes Hastelloy C (standard), Hastelloy B, Tit num 50 65 80 100 125 inches 2" 2½" 3" 4" 5" ed EN1092-1 PN 16, AI ctions AS 2129 (Table D, E, F), AS 4087 (PN 16, 2 ation 21 bar class DN≤80 ΔP25 (< 0,25 bar) uo-Do IP68 permanent submersion at patibility MC608A/B/R/P, M	al Carbon steel (\$235JR - 1.0037), AISI 304 optional, A rodes Hastelloy C (standard), Hastelloy B, Titanium, Tanta num 50 65 80 100 125 150 inches 2" 2½" 3" 4" 5" 6" ed EN1092-1 PN 16, ANSI 150 ctions AS 2129 (Table D, E, F), AS 4087 (PN 16, 21), KS10K, c ation 21 bar class DN≤80 ΔP25 (< 0,25 bar) DN≥ ree IP68 permanent submersion at 1,5 m (EN 6) patibility MC608A/B/R/P, MC406	al Carbon steel (S235JR - 1.0037), AISI 304 optional, AISI 316 optio rodes Hastelloy C (standard), Hastelloy B, Titanium, Tantalum, Platinur ture -40°C / + 80°C inches 2" 2½" al 50 65 80 100 125 150 200 inches 2" 2½" 3" 4" 5" 6" 8" ed EN1092-1 PN 16, ANSI 150 EN1092-1 PN 16, ANSI 150 AS 2129 (Table D, E, F), AS 4087 (PN 16, 21), KS10K, others on requisition ation 21 bar 21 bar DN≥100 ΔP40 class DN≤80 ΔP25 (< 0,25 bar) DN≥100 ΔP40 ree IP68 permanent submersion at 1,5 m (EN 60529) MC608A/B/R/P, MC406	al Carbon steel (S235JR - 1.0037), AISI 304 optional, AISI 316 optional rodes Hastelloy C (standard), Hastelloy B, Titanium, Tantalum, Platinum ture ture -40°C / + 80°C mm 50 65 80 100 125 150 200 250 inches 2" 21⁄2" 3" 4" 5" 6" 8" 10" ed EN1092-1 PN 16, ANSI 150 ctions AS 2129 (Table D, E, F), AS 4087 (PN 16, 21), KS10K, others on request ation CAS 2129 (Table D, E, F), AS 4087 (PN 16, 21), KS10K, others on request class DN≤80 ΔP25 (< 0,25 bar) DN≥100 ΔP40 (< 0,40 bar) conditions U0-D0 patibility MC608A/B/R/P, MC406		

SENSOR MUT1000EL CE WRAS

The wafer electromagnetic flowmeter

MUT1000EL sensors represent the state of the art of Euromag International production for water cycle and process applications.

APPLICATIONS:

- Water treatment
- Waste water industry
- Mining
- Industry

FEATURES:

- Excellent price performances ratio
- Easy and time-saving installation
- Less mechanical resistance
- External coating for offshore or subsoil installation. Optional paint certified for C4 class environment
- Wide choice of materials for housing including SS304 and SS316
- Robust, fully welded and potted construction
- Empty pipe electrode supplied as a standard (\geq DN50)
- Bi-directional measure
- Coupled with any Euromag converters
- In house wet calibration for all diameters

- IP68 for permanent immersion in water up to 1.5 m
- Drinking water approvals
- WRAS, FDA and DM174 approvals
- Atex IECEx (separate version)
- CE

Available	mm	25	40	50	65	80	100	125	150	200	250	300
diameters inches		1″	1.1½″	2″	2 . 2½"	3″	4″	5″	6″	8″	10″	12″
Joints: couplin	g flanges	Anges EN1092-1, ANSI 150, ANSI 300, ANSI 600, ANSI 900, DIN 2501, BS 4504, AS 2129 (TABLE D - E - F), AS 4087, ISO 7005-1, KS 10K										
Maximum pres	sure	40	40 bar for diameters < DN150 16 bar for diameters > DN200									
			Inter	nal lining				Lie	quid temp	erature		
Internal lining liquid tempera				PTFE			Stand	dard -40 /+	130°C (up	to +180° o	on request)
			E	bonite					-40°C / +	80°C		
Degree of pro	tection				IP68 con	tinuous im	mersion at	a 1,5 m (E	N 60529)			
Compatible co	nverters		MC608 A/B/R/P/I, MC406									
Electric conne	ctions	Cable glands M20 x 1.5 + terminal block + sealing resin										

[1] Compact version Tmax 80°C.

SENSOR MUT1100J CE

The electromagnetic flowmeter designed for irrigation

The perfect flowmeter designed for agricultural market

APPLICATIONS:

- Irrigation
- Water / Waste water industry
- Refrigerating systems
- Buildings and construction
- Fire fighting

FEATURES:

- Economic and ecologic solution low investment and maintenance costs, very accurate measurement
- Flow tube made in Noryl ™ resistant to aggressive liquids and fertilizers
- Light weight and compact dimensions
- Body protected with cataphoresis treatment, and fully potted
- Grounding rings not required thanks to the third electrode
- \bullet Temperature of the liquid between 0°C and + 80°C
- Bi-directional measure
- •Coupled with any Euromag converters
- In house wet calibration for all diameters

- 2014/35/EU EN 61010-1:2013 (LVD)
- 2014/30/EU EN 61326-1:2013 (EMC)

Available	mm	40	50	65	80	100	150			
diameters	inches	1.1½″	2″	2 . 21⁄2″	3″	4″	6″			
Connections: fl	anges	ges EN1092-1/ANSI150								
Max pressure			16 bar							
Max temperatu	re			80	°C					
Protection deg	ree			IP67 (IP68 d	on request)					
Compatible			MC608A/B/P/R/I			MC406				
Parts in contact	:	Flow tu	Flow tube: Noryl ™ + Fiber glass O - Ring: NBR							

SENSOR MUT2400EL

FEATURES:

- Full range of process connections: Triclamp, DIN11851 or SMS1146
- Perfectly resistance to periodic sanitary cleaning
- Bi-directional measure
- Robust stainless steel construction, fully welded and potted
- Coupled to MC608A and MC608P converters
- In house wet calibration for all diameters
- Vacuum resistance
- Hygienic construction

REFERENCE STANDARDS:

- European directive 2014/32/EU MID (pending)
- EHEDG and 3A (pending)
- PTFE conform to WRAS, FDA and DPR 777/82 and DM 21/09/773 approvals
- Atex IECEx (separate version)
- CE

The electromagnetic flowmeter designed for food industry

The flow sensor engineered for food industry applications, manufactured in stainless steel AISI 304 with internal lining in PTFE.

APPLICATIONS:

- Food & beverage
- Breweries and wineries
- Dosing and batching applications
- Chemicals
- Pharmaceutical
- Irrigation (extremely accurate measure of fertilizers)

Flow tube material				AISI 304				AISI :	316 (op	tional)	
Connections material			AISI304					AISI 316 (optional)			
Available electrodes			stelloy (C (standa	ird)	Haste	lloy B	Titar	nium	Tan	talum
Internal lining						PTFE fo	or food				
Liquid temperature		Se	parate -	40°C / ·	+ 130°C	/ Comp	act -250	C° / + 80)C°		
Available diameters	mm	25	32	40	50	65	80	100			
	inches	1″	1 ¼″	1 ½″	2″	2 1/2"	3″	4″			
Standard connections	·		Triclamp								
Other connections available			DIN 11851 Female SMS 1146 Female								
Standard operation pressure			16 bar with Triclamp / 25 Bar with DIN or SMS								
Number of electrodes			2 Standards – 3rd electrode for empty pipe alarm as option								
Installation requirements/conditions			U5 – D3								
Protection Degree			IP68 permanent submersion at 1,5 m (EN 60529)								
Converters compatibility			MC608A/P								
Electrical connections		Cableg	ands M20	x 1.5 + te	erminal bo	ox (alumini	um std, p	olycarbon	ate optio	nal) + sea	lling resin
Hygienic				FDA a	approve	d materi	als – EH	IEDG Pe	nding		

TECHNICAL DRAWINGS

DIN 11851 female ADAPTER

SMS 1146 female ADAPTER

SENSOR MUT500

FEATURES:

- Flow tube in PTFE, case and connections in Stainless Steel
- Connections: Gas (std), NPT, Triclamp, DIN 11851
- Bi-directional measure
- Coupled to all Euromag converters
- In house wet calibration for all diameters

REFERENCE STANDARDS:

- PTFE conform to WRAS, FDA and DPR 777/82 and DM 21/09/773 approvals
- IP 68 up to 1,5 m c.o.w.
- CE

The electromagnetic flowmeter for small flows

MUT500 series are the most suitable for the measurement of the small flow rates, covering diameters from DN6 to DN20. Thanks to their materials, they are suitable for the use in the food industry.

APPLICATIONS:

- Pharmaceutic
- Chemicals
- Jams
- Chlorination

Available diameters	mm	3	6	10	15	20				
Available diameters	inches	1/8″	1/4″	3/8″	1/2″	3/4″				
Connections			Male	e trheaded, NPT-M, Tri	iclamp, DIN 11851					
Nominal pressure				16 bar						
Liquid temperature (constant	:)	-20°C a +130°C [1]								
Degree of protection				IP68 continuous inme	rsion at 1,5 m					
Converters compatibility		MC608A/P								
Parts in contact with the liquid		Flow tube: PTFE Gasket: Viton [2]								
Weight [3]	1,9 kg									

For the compact version Tmax = 80°C
 Others on request.
 Maximum weight of sensor without cables.

SENSOR MUT4000 CE

Designed for the automotive industry

Encouraged by the R&D dept. of Automobili Lamborghini S.p.A., Euromag has developed a unique solution, designed primarily for the automotive market.

APPLICATIONS:

Automotive

FEATURES:

- Hose connections
- LEMO connectors specific for automotive use
- Extremely light weight
- Compact size
- Extremely accurate at low flows
- No moving parts
- Closure in Carbon steel with cataphoresis treatment
- Now also available a special version in Stainless Steel 304 for extremely rough conditions in test benches
- Coupled to MC608LB and MC608P converters
- In house wet calibration for all diameters
- FCA approved

- 2014/35/EU EN 61010-1:2013 (LVD)
- 2014/30/EU EN 61326-1:2013 (EMC)

Temperature Rating		-25°C to +120°C						
Viscosity Range		Viscosity independent						
Accuracy and repeatability		0,2% ± 2mm/s						
Fluid Conductivity		Must be greater than 5 μ S/cm						
Flow tube		PET - on request AISI 304						
Electrodes		3 el. in AISI 316						
Closure	Car	bon steel with cataphoresys treatm	nent					
Protection Rating		IP67 NEMA 6						
Connections		Hose fittings						
Connectors		Lemo – specific for automotive use	9					
Pressure class		PN10						
Suitable converters		MC608P – MC608LB						
Cable length	Cable CF240PUR 5mt (16.4 ft)	Cable CF240PUR 6,1mt (20 ft)	Cable CF240PUR 12,2mt (40 ft)					
Options	Stainless S	Stainless Steel 304 body for extremely rough conditions						
Operating and Maintenance Manual		Included						
Calibration Certificate		Included						
Software PC		Included						

SENSOR MUT2100EL CE

The electromagnetic flowmeter with Rilsan® lining

Thanks to the Rilsan® coating, MUT2100EL is stable since its first application and eco-friendly.

APPLICATIONS:

- Irrigation
- Clean water

FEATURES:

- Protection from corrosion and chemical attacks
- Low permeability to humidity
- Weather proof
- High thermal resistance
- Vibrations absorption
- Exceptional abrasion resistance
- Exceptional shock resistance and extremely low friction coefficient
- High flexibility
- Maximum fluid temperature: 80°C.

- BSI WIS 4-52-01,
- KIWA BRL K759-01
- UL 1091

Available diameters	mm	50	80	100	150				
Available Glameters	inches	2"	3"	4″	6″				
Standard flanged connections	S		EN1092-1 PN	16, ANSI 150					
Flanged connections on requ	est	AS 2129 (Ta	ble D, E, F), AS 4087 (PI	N 16, 21), KS10K, others	s on request				
Standard operation pressure		PN16							
Protection degree			IP67 - on re	equest IP68					
Converters compatibility		MC608A/B/R/P, MC406							
Parts in contact with liquid			Rilsan®/H	astelloy-C					
Electrical connections		Cableglands M20x15 + terminal box + sealing resin							

SENSOR MUT2100F CE

The electromagnetic flowmeter with Victaulic® connections

MUT2100F is Euromag unique solution specifically developed for anti-seismic and fire protection systems.

APPLICATIONS:

- Fire fighting
- Building
- Construction
- Naval

FEATURES:

- Universal Victaulic[®] connection
- Very quick assembly (grooved pipe joining method)
- High performances materials
- Rilsan[®] Coating
- Protection from corrosion and chemical attacks
- Low permeability to humidity
- Weather proof
- High thermal resistance
- Vibrations absorption
- Exceptional abrasion resistance
- Exceptional shock resistance and extremely low friction coefficient
- High flexibility
- •Maximum fluid temperature: 80°C.

- BSI WIS 4-52-01
- KIWA BRL K759-01

Available diameters	mm	50	80	100	150				
Available diameters	inches	2″	3″	4″	6"				
Standard operation pressure	•		PN10.	PN25					
Protection degree		IP67 – on request IP68							
Converters compatibility			MC608	B A/B/R					
Parts in contact with liquid			Rilsan®/ha	astelloy-C					
Electrical connections		Cable glands M20x15 + terminal box + sealing resin							

SENSOR MUT1222 CE

FEATURES:

- Easy and quick to install
- "Hot tap" application: no need to stop the flow
- Maximum liquid temperature: 80°C
- Robust fully welded construction
- Pressure up to 20 bar
- Bi-directional measure
- Coupled to all Euromag converters
- In house wet calibration for all diameters

REFERENCE STANDARDS:

• Atex - IECEx (separate version)

The electromagnetic insertion flowmeter

The new MUT1222 insertion flowmeter is available in three different sizes (Small, Medium and Large) and can be used as a portable or dedicated instrument, representing a cost effective alternative to full-bore meters.

APPLICATIONS:

- Water network management
- Leakage control
- District metering
- Flow surveys
- Flow profiling
- Checking on-site flowmeters
- Data capture reporting and analysis

6	Size Small (S)	Size Medium (M)	Size Large (L)					
Size range	50600	2001500	4502600					
Body material		AISI 304 Stainless Steel						
Head of sensor		POM						
Standard operating pressure	20 bar							
Temperature of liquid	-40 °C , +80 °C							
Protection Degree	IP68	for immersion at 1,5m (IEC	529)					
Converter compatibility		MC608, MC406						
Post-in contract with Hand	Head of sensor	Electrodes	Pipe end					
Parts in contact with liquid	POM AISI 316L AISI 304							
Electric connections	Cable gland I	M20 x 1.5 + Terminal block +	- sealing resin					

SENSOR MUT2770 CE

The electromagnetic insertion flowmeter

MUT2770 sensors must be installed on empty pipes, through a 2" nozzle with a UNI 2278 counter flange to which connect the sensor.

APPLICATIONS:

- Water network management
- Leakage control
- District metering
- Flow surveys
- Flow profiling
- Checking on-site flowmeters
- Data capture reporting and analysis

FEATURES:

- Suitable to pipe diameter from DN80 up to DN4000
- Pressure up to 25 bar
- Bi-directional measure
- Coupled to all Euromag converters
- In house wet calibration for all diameters

- IP 68 up to 1,5 m c.o.w. (only separate version)
- CE

Cine manual	Minimum pipe diam	eter	80 mm			
Size range	Maximum pipe diam		2000 mm			
Available electrodes		AISI 316L				
Body material		AISI 304 Stainless Steel				
Head of sensor	PTFE					
Standard operating	16 bar					
Temperature of liquid	-40 °C , +180 °C					
Protection Degree	IP68 for immersion at 1,5m (IEC 529)					
Converter compatibility		MC 608, MC 406				
Parts in contact	Head of sensor	Electrodes		Pipe end		
with liquid	PTFE	AISI 316		AISI 304		
Electric connections	Cable	Cable gland PG 11 + Terminal block + sealing resin				

SENSOR MUT2660 CE

The electromagnetic insertion flowmeter

MUT2660 sensors must be installed on empty pipes, through a 1.1/4" threaded brass muff, to be welded to the pipe to which connect the sensor.

APPLICATIONS:

- Water network management
- Leakage control
- District metering
- Flow surveys
- Flow profiling
- Checking on-site flowmeters
- Data capture reporting and analysis

FEATURES:

- Suitable to pipe diameter from DN80 up to DN500
- Pressure up to 10 bar
- Bi-directional measure
- Coupled to all Euromag converters
- In house wet calibration for all diameters

- Atex IECEx (separate version)
- IP 68 up to 1,5 m c.o.w. (only separate version)
- CE

Sine name	Minimum pipe diam	eter	80 mm			
Size range	Maximum pipe diam	eter	500 mm			
Body material		AISI 304 Stainless Steel				
Head of sensor	PTFE					
Standard operating	10 bar					
Temperature of liquid	-40 °C , +180 °C					
Protection Degree	IP68 for immersion in 1,5m (IEC 529) (separate version)					
Converter compatibility	MC 608, MC 406					
Total length [mm]	317					
Parts in contact	Head of sensor	Electrode	s	Pipe end		
with liquid	PTFE	AISI 316	-	AISI 304 Stainless Steel		
Electric connections	Cable gland PG 11 + Terminal block + sealing resin					
Weight [1]	2 kg					

[1] Maximum weight of sensor without cables in the separate version.

The Hybrid electronic converter for all applications

The MC608 converter has been designed with the purpose of meeting all the requirements of modern water management systems through a flexible and hybrid electronic, mains powered, battery powered, or both.

APPLICATIONS:

- Abstraction and distribution
- District measurements
- Revenue and bulk metering
- Transport lines
- Irrigation
- Waste water and treatment
- Leak detection systems
- Any remote application with no access to mains power

FEATURES:

With advanced display information, on-site data collection and remote monitoring via GSM/GPRS network, the MC608 allows any customer to access all the information, easily and at no cost.

MC608A: Mains powered version 12/24 Vac dc or 90/264 Vac MC608B: Battery powered, with a useful life of 6 years and 12/24 Vac-dc input MC608R: Rechargeable battery powered, with solar panel and 12/24 Vac-dc input MC608P: Panel version, with polycarbonate case MC608I: Stainless Steel case, for outdoor installation and extreme weather conditions MC608LB: Dedicated version for MUT4000, with Lemo connectors for automotive application

- Communication with other instruments via: analog output 4-20 mA, frequency, pulse, RS485 Modbus
- 5 independent internal totalizer (2 positive, 2 negative, 1 NET)
- IrCOM communication
- 4 MB flash memory, 200,000 lines of data
- Hart protocol option available (only MC608A)
- Pressure and temperature reading modules
- GSM/GPRS module

- 2014/35/EU EN 61010-1:2013 (LVD)
- 2014/30/EU EN 61326-1:2013 (EMC)
- OIML R49-1:2013 Class 2 (only MC608A)

		MC608A	MC608P	MC608B	MC608R	MC608I	
	Case	Aluminium IP68	Polyc. IP54	Aluminium IP68	Aluminium IP68	SS IP54	
	90264 Vac	V	\checkmark			\checkmark	
Davies and the	12/24 Vac/dc	1	V			\checkmark	
Power supply	Battery powered supply or 12/24Vac/dc			\checkmark		V	
	Rechargeable battery + solar panel				\checkmark	V	
I	Compact	V		\checkmark	\checkmark		
Installation	Separate	max 100m	max 100m	max 30m	max 30m	max 100n	
	Analogue output 4-20mA	\checkmark	\checkmark	\checkmark	***	\checkmark	
	Pulse output	\checkmark	V	\checkmark	\checkmark	V	
Signals I/O	Hart protocol*	V	V				
	Programmable digital output	\checkmark	V	**	***	V	
	Active frequency digital output 0-10 kHz	V	V	**	***	V	
Serial	IrCOM interface	V	V	\checkmark	\checkmark	V	
Communication	RS 485 - MODBUS RTU	V	V	**	***	\checkmark	
Display	Graphic LCD display 128x64 pixels, 50x25mm visual area, backlit white colour	V	V	\checkmark	1 1		
Programming	With push buttons on board of converter, by IrCOM interface or via RS485 and MODBUS RTU	1	\checkmark	\checkmark	\checkmark	\checkmark	
Process	4 MB flash memory, 200,000 lines of data	V	V	\checkmark	J J		
Standards	Type approved OIML R49-1: 2013 - Class 2	V					
Temperature			Media 0	0 +60 C° (- 70 C° (32 +70 C° (-2	+158 F)		
Flow units			ml, cl, dl, l, dal, hl, m3 , in3, ft3, gal, USgal, bbl, oz + Custom value				
Add on modules		GSM/GPRS Euromag Module Pressure (1) and temperature (2) 5 (2 positive, 2 negative, 1 NET)					
Totalizers							
Alarms and status		Status icon displayed and alarm logged in the datalogger					
Self-diagnostic			Alarms available: • excitation failure • empty pipe on the 4th electrode • high temperature • pulse overlapped				
External verification			Field verificator available for calibration verification and electronic status				
Software for communication and programming			Commissioning (equal settings of meters) - Data print for do- cumentation - Data export (CSV file) - Firmware update - Read instant flowrate - Read and write all non-volatile parameters - Download internal datalogger - View instrument event logger				
Diagnostic Data logger			64 kB EEPROM, 2000 lines of data. Not programmable and tamper/ reset proof				

* Optional

** with 24 Vdc power supply *** Only in recharge mode

\frown					
MID approved		OIML approved		GSM ready	
ппП					

The new battery powered electronic converter

The MC406 it is the new high-efficiency, technologically advanced battery powered electronic converter from Euromag, combining high performances and dedicated applications solutions to a low cost of ownership.

APPLICATIONS:

- Irrigation
- Abstraction and distribution
- Revenue and bulk metering
- Waste water and treatment
- Leak detection systems
- Any remote application with no access to mains power

Combined to the Euromag MUT2300 sensor series, the MC406 is capable to read flow velocities starting at 0.015 m/s (MID-OIML R49 certified).

FEATURES:

- Compact (horizontal or vertical) or Separate (up to 30 meters of cable)
- Coupled to Full bore sensors up to DN600 Insertion meters
- 4 independent internal totalizer
- Pressure and temperature reading modules
- Built-in datalogger with over 100.000 data lines capacity
- Pressure and temperature modules available
- GSM/GPRS

- Custody transfer (MID MI-001, OIML R49)
- 2014/35/EU EN 61010-1:2013 (LVD)
- 2014/30/EU EN 61326-1:2013 (EMC)

Transmitter type	Battery powered - 2 x D Cell 3,6 V *			
Battery life	Lithium battery pack up to 10 years			
Accuracy	0,2 % +/- 2 mm/s - insertion sensors 2% of rate +/- 2mm/s			
	Ambient: -20 +60 C° (-4 +140 F)			
Temperature	Media 0 70 C° (32 +158 F)			
	Storage -40 +70 C° (-22 +158 F)			
	Policarbonate case with aluminum bottom on compact vertical version.			
Enclosure	IP 67 / 68. Remote wall mount braket in carbon steel zinch plated			
Cable entries	4X PG9 Glands I/O - 2X PG20 Glands junction box in remote version			
Custody transfer	Type approved OIML R49-1 2013 / EN 14154 MID EN-ISO 4064 - Certificate n. T10713			
Conformity	EMC: EN 61000-6-3, EN 61000-6-2, EN 61326-1			
Sensor type	Full bore up to DN 600 - Insertion meters			
Flow velocity range	0,015 m/s up to 10 m/s			
Sampling rate	Standard mode 1 / 5 Hz up to 1 / 60 Hz (default 1 / 15 Hz) max 3,125 Hz			
	Integral (compact) or remote with factory mounted sensor cable in 5 m (16,4 ft) up to 30 m (98,4 ft)			
Digital filters	Damping - cut-off (0,05 m/s default) - bypass - peak cut			
	LCD display - Index, menu, and symbols icons for dedicated information			
Display and keys	4 Push buttons to access all functions			
	Totalizer informations can be displayed with 5 decimal digits			
	Live flowrate			
	Total positive totalizer (T+)			
	Total negative totalizer (T-)			
	Partial positive totalizer (P+)			
Displayed informations	Partial negative totalizer (P-) Time & date			
	Converter temperature			
	Process pressure and temperature (if available)			
	Parameters corresponding code and value			
Flow Units	m, m³, l, ML, ft³, GAL			
Outputs	2 pulses passive outputs (MOS), individual galvanically isolated - clean contact			
	Maximum load +/- 35V DC, 100 mA short circuit protected			
Communication	Integrated Euromag IrComm interface			
Datalogging	100,000 lines of data with a frequency of log between 1 minute and 120 minutes (default 15 minutes)			
	GSM/GPRS Euromag Module			
Add on modules	Pressure (1) and temperature (2)			
	Energy metering ready			
Totalizers	4 (2 positive and 2 negative)			
Date and time	Yes			
Data protection	Password available, automatic firmware check and recover during the update			
Alarms and status	Status icon displayed and alarm logged in the datalogger			
	Alarms available:			
	excitation failure high voltage supply			
Self diagnostic	empty pipe on the 4th electrode pulse overlapped			
-	empty pipe on the measuring electrodes wet electronic board			
	high temperature			
External verification	Field verificator available for calibration verification and electronic status			
Software for	Commissioning (equal settings of meters) - Data print for documentation - Data export			
communication and	(CSV file) - Firmware update - Read instant flowrate - Read and write all non volatile			
External verification Software for	 empty pipe on the measuring electrodes high temperature Field verificator available for calibration verification and electronic status Commissioning (equal settings of meters) - Data print for documentation - Data export 			

* Lithium batteries are subject to special transportation regulations according to United Nations "Regulation of Dangerous Good", UN 3090 and UN 3091. Special trasnport documentation is required to observe these regulations. This may influence both trasnport time and cost

DATA TRASMISSION GSM/GPRS INTEGRATED SYSTEM

The Euromag integrated GSM/ GPRS wireless system

An innovative, simple, universally compatible and consistently effective method for delivering, monitoring and managing realtime data from anywhere. Instant alerts help to respond to flow anomalies and intervene immediately.

visit www.euromagdata.com

The system is compatible with MC608A/B/R/I and MC406 for continuous monitoring in any type of application related to water (i.e. irrigation, distribution, pumping stations). It is also an excellent solution for monitoring consumption.

FEATURES:

- Simple: easy to use and user-friendly programming
- Effective: sends your data anywhere everywhere to SMS, E-mail (with or without attachment), web (www.euromagdata.com)
- Cost and time efficient: maximize productivity relying on latest mobile technology and reducing costs of data collection
- Universal: compatible with SIM cards of all GSM carriers, worldwide (5 band modem)
- Complete: flow, pressure, temperature; all information always under control
- **Reactive:** real data and alarms in real time
- Compact: all in one, no extra modules attached
- Safe: sensor and converter can be placed in a safe place such as underground pits, with only the antenna running out.

The flow data, together with pressure and temperature, can be forwarded to any recipient specified by the customer without the need for proprietary or complicated software:

- via SMS
- via email, as plain text or with .csv attachment
- via the site www.euromagdata.com, via private and secure access

Intervals in sending/receiving data and any alerts are customizable (day, week, month) and values are, registered constantly.

FIELD VERIFICATOR

A portable unit that can be used as a diagnostic and conditionmonitoring tool

The Field verificator is a portable unit that can be used as a diagnostic and condition-monitoring tool, both for sensors and converters. It checks on-site meter's performance without the need to stop the flow, avoiding extra cost for installation and removal of the flowmeter.

FEATURES:

- Simulates the electromagnetic sensor and captures the converter's measure through RS485 interface
- Measures the converter's excitation current
- Stores the converter's settings on netbook as a reference for future tests or alignment of the converter
- Transfers calibration factor between converters allowing minimum error
- Performs a functional test on converter's I/O
- Calibrates the 4-20 mA output
- Verifies sensor's integrity through a dedicated motherboard

- Robust plastic case housing
- Stand-alone, powered by internal battery
- Totally automed and easy to use
- Power supply and wiring test connectors fixed on aluminium plate
- Supporting plate for electronic motherboard installation

ULTRASONIC FLOWMETERS

Euromag ultrasonic transit time flowmeters use two sensors, set opposite each other in the measuring tube. Each sensor can alternately transmit and receive ultrasonic signals, while simultaneously measuring the signal transit time. As soon as the fluid in the tube starts to flow, the signals are accelerated in the direction of flow but delayed in the opposite direction. The differential transit time, measured by the two sensors, is directly proportional to the flow rate.

Typical applications include:

- Water industry: revenue metering, district metering,water abstraction, leakage detection
- Wastewater industry: transport networks, sewage treatment plants
- Metal & mining industry: mediums with a low solid content

Highlights:

- For stationary or temporary flow measurements
- For retrofitted installation without interrupting the process
- Aggressive fluids can be measured without any problems, even under high pressure
- Suitable for pipes made of plastic, steel, cast iron or composite materials (lined/unlined)
- For pipe diameters up to DN6000
- Long service life, no abrasion or corrosion from the fluid
- No moving parts, minimum maintenance and upkeep
- Free pipe cross-section, no pressure loss
- Measurement independent of pressure, density, temperature, conductivity and viscosity (for homogeneous fluids)

Flowmeters

Product Catalogue

FLOWMETERS EUROSONIC2000 WALL MOUNT

Fixed installation ultrasonic transit time flowmeter

The Eurosonic 2000 flow meter is based on clamp-on transit-time flow measurement principle.

APPLICATIONS:

- Potable water
- Sewage (with limited particle content)
- Seawater
- Wastewater
- Discharge water
- Other liquids used in industrial applications

It covers a wide range of pipe sizes and materials, thanks to 3 different sizes of transducers: S2 (DN15-DN100), M2 (DN50-DN700) and L2 (DN300-DN6000).

FEATURES:

- Economic, non-intrusive, flow measurement
- Simple installation
- No pressure drop
- Velocity, volumetric and totalized flow
- Data logger
- Digital output configurable
- 4...20 mA output
- RS 485

FLOWMETERS EUROSONIC2000 HAND HELD

Portable installation ultrasonic transit time flowmeter

The Hand Held is a battery-powered ultrasonic flow meter with the capability of a full-size flow meter.

APPLICATIONS:

- Potable water
- Sewage (with limited particle content)
- Seawater
- Wastewater
- Discharge water
- •Other liquids used in industrial applications

It covers a wide range of pipe sizes and materials, thanks to 3 different sizes of transducers: S2 (DN15-DN100), M2 (DN50-DN700) and L2 (DN300-DN6000).

FEATURES:

- Carefully designed for portability and ease of use
- Economic, non-intrusive, flow measurement
- Simple installation
- No pressure drop
- Velocity, volumetric and totalized flow
- Lightweight and long operating time

FLOWMETERS EUROSONIC X100P

FEATURES:

- Battery operated up to 10 hours operations
- Transit-Time ultrasonic DSP technology
- Water proof model
- Principle AR Mode, Transit-Time
- Accuracy ±1.0%, RD, ±0.5% with dual path
- Measuring Pipe Size 12 ~ 6000 mm
- Measuring Velocity Range ±0.02 ~ ±12.0 m/sec
- Turn Down Ratio 500:1
- Sensitivity 0.003 m/sec
- Datalogger 8 Mbytes (500,000 loggers)
- Operating Temp Flow Computer -20~+60°C Transducers -40~+120°C
- Power AC110~220V, free voltage
- 1 path, or dual path or 2 channel functions
- IP67 Connectors
- Submersible IP68 Transducers
- Touch Key programming + Remocon
- Rugged case IP67
- Large Color LCD Display
- Pulse Output
- Analog Output
- Relay Output for total

Ultrasonic transit time flowmeter High performances

The X100P is fully digitalized, easyto-use portable flowmeter. It can be used also to check the performance of field flowmeters and to compare their performance.

APPLICATIONS:

- Any type of liquids with less than 30% solids or bubbles
- Clean Liquids, Municipal Water, De-Ionized Water
- Acids, Benzene, Diesel, Alcohol
- Milk, Beer, Crude Oil
- Waste Water, Lime Stone Slurries, Manure

Measure > Sense > Innovate

EUROMAG INTERNATIONAL Srl Via della Tecnica, 20 - 35035 Mestrino (Padova) Italia Tel. +39 049.9005064 - Fax +39 049.9007764

www.euromag.com - www.euromagdata.com euromag@euromag.com

All rights reserved. No part of this catalogue may be reproduced, stored in a database or otherwise used without the authorisation of Euromag. The policy of Euromag is dictated by the continuing technological and project innovation. Therefore, the Company reserves the right to amend the data contained herein without notice.